

DISCIPLINE SPECIFIC ELECTIVES (DSE-6)

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Introduction to Nanoscience ELDSE7F	4	4	-	-	Class XII passed with Physics + Mathematics/Applied Mathematics + Chemistry OR Physics + Mathematics/Applied Mathematics + Computer Science/Informatics Practices	-

Learning Objectives

This course introduces the student about nanoscience, which includes the fundamental understanding of effect of size and the related physics involved behind it. They will study fundamentals of quantum physics and its applications in nanoengineering and properties of nanostructures as well as nanomaterials.

Learning outcomes

On successful completion of this course, students will be able to:

- Develop the fundamental base of nanoscience.
- Acquire knowledge of effect of size and the related physics involved behind it.
- Understand the behavior and properties of nanomaterials.

SYLLABUS OF ELDSE-7F**Total Hours- Theory: 60 Hours****UNIT – I (13 Hours)**

Introduction to Nanoscience: Definition and Importance of Nano, Opportunities at nano scale, Scientific revolution- emergence and challenges of nanomaterial and nanotechnology with examples (daily life, health care and energy)
Implications of Nanoscience and Nanotechnology on Society, Harnessing Nanotechnology for Economic and Social Development

Influence of nano over micro/macro, surface to volume ratio-dangling bonds, chemical activity of nanoparticulates, sensing applications with example of graphene. Size effects-idea about electronic wave function, Population of the conduction and valence bands, Quasi Fermi levels, examples of metal nanoparticles.

UNIT – II (17 Hours)

Fundamentals of Quantum Theory: Origins of Quantum Physics, Particle properties of waves: Black body radiation, Photoelectric effect, Compton Effect; Wave properties of particles: De Broglie waves, Wave description, Particle diffraction, The Wave Particle Duality, The Uncertainty Principle, The Wave Packet and the Wave Function, The Schrödinger Equation, The Expectation Value, The Free Particle Solution, The Linear Harmonic Oscillator Problem, The Kronig-Penney Model for Electron in a 1-Dimensional Lattice

UNIT – III (13 Hours)**Quantum Nanoengineering:**

Particle in a Box, Quantum Limit: From 3D to 0D, Quantum Confinement in Semiconductors: Potential Step, Potential Barrier, Quantum Well. Atomic structure: Electron orbits, The Bohr atom; Quantum Structure: 2D (Quantum well), 1D (Quantum Wires), 0D (Quantum Dots);
3D Density of States, 2D Model- Energy Eigen values and Density of States, 1D Model- Energy Eigen values and Density of States, Q0D Model- Energy Eigen values

UNIT – IV (17 Hours)

Quantum Effect on Properties of Nanostructures and Nanomaterials: Melting Point- Variation in bulk vs nanoparticles, nanowires, nanosheets, superheating, liquid drop model (Quantitative); Electronic structure and Optical Properties-band gap dependence on the size of the nanoparticles(quantitative), concept of excitons; Mechanical Properties- ductility, strain hardening, yield stress, dynamic response, creep(qualitative); Dielectric Properties- particle size dependence of refractive constant, extinction coefficient (quantitative), Magnetic Properties-idea about diamagnetism, paramagnetism, ferromagnetism, Curie temperature, remanent magnetization, coercive field; saturated magnetization and its dependence on size and temperature(quantitative)

Size dependent electronic Properties (Classification of materials based on band structures - Brillouin zone – Effect of temperature, Quantized conduction, Ballistic transport, Coulomb blockade).

Practical component (if any) – None

Essential/recommended readings

1. Introductory Nano science by Masuro Kuno, Garland science (2011)
2. Concepts of Modern Physics by Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, MedTech Science Press, 8th Edition, 2024
3. Nanophysics and Nanotechnology by Edward L. Wolf Wiley-VCH-2006
4. Nanotechnology: Principles & Practices, S.K. Kulkarni, Springer, 2015.

Suggestive readings

1. Introduction to Nanomaterials and Devices: Omar Manasreh (Wiley), 2011
2. Introduction to Nano, Basics to Nanoscience and Nanotechnology, Amretashis Sengupta, Chandan Kumar Sarkar Editors, 2015, Springer, ISBN 978-3-662-47313-9
3. Textbook of Nanoscience and Nanotechnology, B S Murty and others, 2013, Springer, e-ISBN 978-3-642-28030-6

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.